MATH 4030 Differential Geometry Tutorial 6, 18 October 2017

1. Find the mean curvature H and the Gauss curvature K of the following surfaces:

- (a) $S_1 = \{ (R \cos \theta, R \sin \theta, z) | \theta \in [0, 2\pi], z \in \mathbb{R} \}$ (cylinder)
- (b) $S_2 = \{(x, y, x^2 y^2) | x, y \in \mathbb{R}\}$ (hyperbolic paraboloid)

where the normal is taken to be the outward normal for (a) and the upward normal for (b).

Solution.

(a) Let $X : I \times \mathbb{R} \to S_1 : (\theta, z) \mapsto (R \cos \theta, R \sin \theta, z)$ where I is $(0, 2\pi)$ or $(-\pi, \pi)$. Then X is a parametrization of S_1 and

$$X_{\theta} = (-R\sin\theta, R\cos\theta, 0)$$
$$X_{z} = (0, 0, 1)$$
$$X_{\theta} \times X_{z} = (R\cos\theta, R\sin\theta, 0)$$
$$N = \frac{X_{\theta} \times X_{z}}{|X_{\theta} \times X_{z}|} = (\cos\theta, \sin\theta, 0)$$

Note that N agrees with the given normal vector. Let \mathcal{S} be the shape operator. Then we have

$$S(X_{\theta}) := -\frac{\partial N}{\partial \theta}$$

= $(\sin \theta, -\cos \theta, 0)$
= $-\frac{1}{R} \cdot X_{\theta} + 0 \cdot X_{z};$

and

$$S(X_z) := -\frac{\partial N}{\partial z}$$

= (0,0,0)
= 0 \cdot X_\theta + 0 \cdot X_z

It follows that

$$[\mathcal{S}]_{\{X_{\theta}, X_z\}} = \begin{pmatrix} -\frac{1}{R} & 0\\ 0 & 0 \end{pmatrix}.$$

What we want to find are

$$H = \operatorname{tr}(\mathcal{S}) = -\frac{1}{R}$$
 and $K = \operatorname{det}(\mathcal{S}) = 0.$

- (b) See Solutions to HW3 Q7.
- 2. Prove the spectral theorem for 3×3 symmetric real matrices: let $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ with $A^T = A$. Then \mathbb{R}^3 has an orthonormal basis consisting of eigenvectors of A.

Solution. See p.18-19 of Lecture notes (part 3).